Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Food Microbiol ; 285: 173-187, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30176565

RESUMO

The Danish Danbo cheese is a surface ripened semi-hard cheese, which before ripening is submerged in brine for up to 24 h. The brining is required in order to obtain the structural and organoleptic properties of the cheeses. Likewise, the content of NaCl in the cheese will influence especially the surface microbiota being of significant importance for flavour development and prevention of microbial spoilage. Even though the microbiota on cheese surfaces have been studied extensively, limited knowledge is available on the occurrence of microorganisms in cheese brine. The aim of the present study was to investigate by both culture-dependent and -independent techniques the brine microbiota in four Danish dairies producing Danbo cheese. The pH of the brines varied from 5.1 to 5.6 with a dry matter content from 20 to 27% (w/w). The content of lactate varied from 4.1 to 10.8 g/L and free amino acids from 65 to 224 mg/L. Bacteria were isolated on five different media with NaCl contents of 0.85-23.0% (w/v) NaCl. The highest count of 6.3 log CFU/mL was obtained on TSA added 4% (w/v) NaCl. For yeasts, the highest count was 3.7 log CFU/mL on MYGP added 8% (w/v) NaCl. A total of 31 bacterial and eight eukaryotic species were isolated including several halotolerant and/or halophilic species. Among bacteria, counts of ≥6.0 log CFU/mL were obtained for Tetragenococcus muriaticus and Psychrobacter celer, while counts between ≥4.5 and < 6.0 log CFU/mL were obtained for Lactococcus lactis, Staphylococcus equorum, Staphylococcus hominis, Chromohalobacter beijerinckii, Chromohalobacter japonicus and Microbacterium maritypicum. Among yeasts, counts of ≥3.5 log CFU/mL were only obtained for Debaryomyces hansenii. By amplicon-based high-throughput sequencing of 16S rRNA gene and ITS2 regions for bacteria and eukaryotes respectively, brines from the same dairy clustered together indicating the uniqueness of the dairy brine microbiota. To a great extent the results obtained by amplicon sequencing fitted with the culture-dependent technique though each of the two methodologies identified unique genera/species. Dairy brine handling procedures as e.g. microfiltration were found to influence the brine microbiota. The current study proves the occurrence of a specific dairy brine microbiota including several halotolerant and/or halophilic species most likely of sea salt origin. The importance of these species during especially the initial stages of cheese ripening and their influence on cheese quality and safety need to be investigated. Likewise, optimised brine handling procedures and microbial cultures are required to ensure an optimal brine microbiota.


Assuntos
Queijo/microbiologia , Microbiologia de Alimentos , Microbiota/fisiologia , Sais , Bactérias/efeitos dos fármacos , Bactérias/genética , Indústria de Laticínios , Dinamarca , Sequenciamento de Nucleotídeos em Larga Escala , Lactococcus lactis/efeitos dos fármacos , Lactococcus lactis/genética , Lactococcus lactis/isolamento & purificação , Microbiota/efeitos dos fármacos , Microbiota/genética , RNA Ribossômico 16S/genética , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Cloreto de Sódio/farmacologia , Leveduras/efeitos dos fármacos , Leveduras/genética
2.
FEMS Yeast Res ; 18(3)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29546274

RESUMO

Saccharomyces cerevisiae secretes antimicrobial peptides (AMPs) derived from glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which induce the death of several non-Saccharomyces yeasts. Previously, we demonstrated that the naturally secreted GAPDH-derived AMPs (i.e. saccharomycin) caused a loss of culturability and decreased the intracellular pH (pHi) of Hanseniaspora guilliermondii cells. In this study, we show that chemically synthesised analogues of saccharomycin also induce a pHi drop and loss of culturability in H. guilliermondii, although to a lesser extent than saccharomycin. To assess the underlying causes of the pHi drop, we evaluated the membrane permeability to H+ cations of H. guilliermondii cells, after being exposed to saccharomycin or its synthetic analogues. Results showed that the H+-efflux decreased by 75.6% and the H+-influx increased by 66.5% in cells exposed to saccharomycin at pH 3.5. Since H+-efflux via H+-ATPase is energy dependent, reduced glucose consumption would decrease ATP production and consequently H+-ATPase activity. However, glucose uptake rates were not affected, suggesting that the AMPs rather than affecting glucose transporters may affect directly the plasma membrane H+-ATPase or increase ATP leakage due to cell membrane disturbance. Thus, our study revealed that both saccharomycin and its synthetic analogues induced cell death of H. guilliermondii by increasing the proton influx and inhibiting the proton efflux.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/química , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/química , Saccharomycetales/efeitos dos fármacos , Permeabilidade da Membrana Celular , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Saccharomycetales/enzimologia
3.
Ann Clin Microbiol Antimicrob ; 16(1): 11, 2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28279173

RESUMO

BACKGROUND: Polymicrobial keratitis with fungus and bacteria can lead to blindness and is challenging to treat. Here, we introduce a case of fungal keratitis caused by two different strains in addition to definite bacterial super-infection caused by an α-Streptococcus sp., and describe the importance of microscopic examination. CASE PRESENTATION: A 74-year-old woman, who had a past history of infection with leprosy, presented with conjunctival hyperaemia, pain, and corneal opacity in her right eye. Under the presumptive diagnosis of infectious keratitis, corneal scrapings were stained by various reagents and inoculated on several agar plates. Microscopic findings of the scrapings revealed fungi and a small number of Gram-positive cocci. Multiple anti-fungal therapies with levofloxacin ophthalmic solution were administered. Although empiric treatment was initially effective, keratitis recurred 10 days after its initiation. Repeated corneal scraping revealed an abundance of Gram-positive chain cocci and a small amount of fungi, resulting in the switching of an antibiotic medication from levofloxacin to moxifloxacin and cefmenoxime. Keratitis resolved gradually after the conversion. Stemphylium sp., Acremonium sp., and α-Streptococcus sp. were simultaneously isolated from the corneal scrapings. CONCLUSIONS: To the best of our knowledge, this is the first case of fungal keratitis caused by Stemphylium sp., and also the first case of super-infection in the cornea caused by two different fungi and one bacterium. Microscopic examination of the corneal scrapings was beneficial in rapid decision of changing to appropriate drug according to the dominancy of pathogenicity.


Assuntos
Acremonium/crescimento & desenvolvimento , Coinfecção/diagnóstico , Infecções Oculares Fúngicas/diagnóstico , Ceratite/diagnóstico , Saccharomycetales/crescimento & desenvolvimento , Streptococcus/crescimento & desenvolvimento , Acremonium/efeitos dos fármacos , Acremonium/patogenicidade , Idoso , Anti-Infecciosos/uso terapêutico , Cefmenoxima/uso terapêutico , Coinfecção/tratamento farmacológico , Coinfecção/microbiologia , Coinfecção/patologia , Córnea/efeitos dos fármacos , Córnea/microbiologia , Córnea/patologia , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/microbiologia , Infecções Oculares Fúngicas/patologia , Feminino , Fluoroquinolonas/uso terapêutico , Humanos , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Ceratite/patologia , Levofloxacino/uso terapêutico , Moxifloxacina , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/patogenicidade , Streptococcus/efeitos dos fármacos , Streptococcus/patogenicidade
4.
Appl Biochem Biotechnol ; 180(6): 1141-1151, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27323768

RESUMO

In the present study, the effect of the type of sugar cane bagasse (non-depithed or depithed) and its particle size on the production of xylose and its subsequent fermentation to xylitol by Debaryomyces hansenii CBS767 was investigated using a full factorial experimental design. It was found that the particle size range and whether bagasse was depithed or not had a significant effect on the concentration and yield of xylose in the resulting hemicellulose hydrolysate. Depithed bagasse resulted in higher xylose concentrations compared to non-depithed bagasse. The corresponding detoxified hemicellulose hydrolysates were used as fermentation media for the production of xylitol. The hemicellulose hydrolysate prepared from depithed bagasse also yielded meaningfully higher xylitol fermentation rates compared to non-depithed bagasse. However, in the case of non-depithed bagasse, the hemicellulose hydrolysate prepared from larger particle size range resulted in higher xylitol fermentation rates, whereas the effect in the case of non-depithed bagasse was not pronounced. Therefore, depithing of bagasse is an advantageous pretreatment when it is to be employed in bioconversion processes.


Assuntos
Celulose/química , Celulose/farmacologia , Tamanho da Partícula , Saccharomycetales/metabolismo , Saccharum/química , Xilitol/biossíntese , Xilose/biossíntese , Fermentação/efeitos dos fármacos , Hidrólise , Saccharomycetales/efeitos dos fármacos
5.
FEMS Yeast Res ; 15(8)2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26546454

RESUMO

The yeast Debaryomyces hansenii overproduces riboflavin upon exposure to subtoxic levels of cobalt (Co(+2)). However, mechanisms for survival have yet to be studied and have been hindered by D. hansenii's high genetic heterogeneity among strains. In this study, we used transcriptomic analyses and RNA-seq in order to identify differentially expressed genes in D. hansenii in response to cobalt exposure. Highly upregulated genes under this condition were identified to primarily comprise DNA damage and repair genes, oxidative stress response genes, and genes for cell wall integrity and growth. The main response of D. hansenii to heavy metal stress is the activation of non-enzymatic oxidative stress response mechanisms and control of biological production of reactive oxygen species. Our results indicate that D. hansenii does not seem to be pre-adapted to survive high concentrations of heavy metals. These organisms appear to possess genetic survival and detoxification mechanisms that enable the cells to recover from heavy metal stress.


Assuntos
Cobalto/toxicidade , Perfilação da Expressão Gênica , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , Saccharomycetales/fisiologia , Estresse Fisiológico
6.
Antonie Van Leeuwenhoek ; 107(3): 675-86, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25528342

RESUMO

The antimicrobial action of chitosan against wine related microorganisms, including Lactobacillus plantarum, Saccharomyces cerevisiae, Oeonococcus oeni, Lactobacillus hilgardii, Brettanomyces bruxellensis, Hanseniaspora uvarum and Zygosaccharomyces bailii was examined in laboratory media. In order to assess the potential applicability of chitosan as a microbial control agent for wine, the effect of chitosan, applied individually and/or in combination with sulphur dioxide (SO2), on the growth of microorganisms involved in various stages of winemaking and on the fermentative performance of S. cerevisiae was investigated. Of the seven wine-related microorganisms studied, S. cerevisiae exhibited the strongest resistance to antimicrobial action of chitosan in laboratory media with a minimum inhibitory concentration (MIC) greater than 2 g/L. L. hilgardii, O. oeni and B. bruxellensis were the most susceptible to chitosan since they were completely inactivated by chitosan at 0.2 g/L. The MIC of chitosan for L. plantarum, H. uvarum and Z. bailii was 2, 0.4 and 0.4 g/L, respectively. In wine experiments, it was found that chitosan had a retarding effect on alcoholic fermentation without significantly altering the viability and the fermentative performance of S. cerevisiae. With regard to non-Saccharomyces yeasts (H. uvarum and Z. bailii) involved in winemaking, the early deaths of these yeasts in mixed cultures with S. cerevisiae were not probably due to the antimicrobial action of chitosan but rather due to ethanol produced by the yeasts. The complex interactions between chitosan and wine ingredients as well as microbial interactions during wine fermentation considerably affect the efficacy of chitosan. It was concluded that chitosan was worthy of further investigation as an alternative or complementary preservative to SO2 in wine industry.


Assuntos
Anti-Infecciosos/farmacologia , Quitosana/farmacologia , Lactobacillus/efeitos dos fármacos , Oenococcus/efeitos dos fármacos , Saccharomycetales/efeitos dos fármacos , Vinho/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Lactobacillus/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Oenococcus/crescimento & desenvolvimento , Saccharomycetales/crescimento & desenvolvimento , Análise de Sequência de DNA , Dióxido de Enxofre/farmacologia
7.
FEMS Yeast Res ; 14(3): 464-71, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24289664

RESUMO

Tetrapisispora phaffii produces a killer toxin known as Kpkt that has extensive anti-Hanseniaspora/Kloeckera activity under winemaking conditions. Kpkt has a ß-glucanase activity and induces ultrastructural modifications in the cell wall of sensitive strains, with a higher specific cytocidal activity and a selective action towards target yeast cells. In this study, a two-step PCR-based approach was used to isolate the gene coding ß-glucanase of T. phaffii. Initially, a fragment of the open reading frame was isolated by degenerate PCR, with primers designed on the NH2 -terminal sequence of the protein and on conserved motifs of Bgl2p of Saccharomyces cerevisiae and Candida albicans. Subsequently, the entire sequence of the gene was obtained by inverse PCR. blast analyses of TpBGL2 highlight high identity with homologous genes in other yeast species, in which TpBGL2p shows no killer activity. However, gene disruption resulted in complete loss of the glucanase activity and the killer phenotype, thus confirming that TpBgl2p has a killer activity.


Assuntos
Antibiose , Glicosídeo Hidrolases/metabolismo , Fatores Matadores de Levedura/metabolismo , Saccharomycetales/fisiologia , Vinho/microbiologia , Técnicas de Inativação de Genes , Glicosídeo Hidrolases/genética , Fatores Matadores de Levedura/genética , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/metabolismo
8.
FEMS Yeast Res ; 13(2): 180-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23122272

RESUMO

We report the characterization of five strains belonging to the halotolerant highly related Debaryomyces hansenii/fabryi species. The analysis performed consisted in studying tolerance properties, membrane characteristics, and cation incell amounts. We have specifically investigated (1) tolerance to different chemicals, (2) tolerance to osmotic and salt stress, (3) tolerance and response to oxidative stress, (4) reactive oxygen species (ROS) content, (5) relative membrane potential, (6) cell volume, (7) K(+) and Na(+) ion content, and (8) membrane fluidity. Unexpectedly, no direct relationship was found between one particular strain, Na(+) content and its tolerance to NaCl or between its ROS content and its tolerance to H(2)O(2). Results show that, although in general, human origin D. fabryi strains were more resistant to oxidative stress and presented shorter doubling times and smaller cell volume than food isolated D. hansenii ones, strains belonging to the same species can be significantly different. Debaryomyces fabryi CBS1793 strain highlighted for its extremely tolerant behavior when exposed to the diverse stress factors studied.


Assuntos
Pressão Osmótica , Estresse Oxidativo , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/fisiologia , Sais/toxicidade , Estresse Fisiológico , Divisão Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Citoplasma/química , Humanos , Fluidez de Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potássio/análise , Espécies Reativas de Oxigênio/análise , Saccharomycetales/química , Saccharomycetales/crescimento & desenvolvimento , Sódio/análise
9.
Curr Microbiol ; 62(3): 933-43, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21061125

RESUMO

Debaryomyces hansenii is a spoilage yeast able to grow in a variety of ecological niches, from seawater to dairy products. Results presented in this article show that (i) D. hansenii has an inherent resistance to H2O2 which could be attributed to the fact that this yeast has a basal catalase activity which is several-fold higher than that observed in Saccharomyces cerevisiae under the same culture conditions, (ii) D. hansenii has two genes (DhCTA1 and DhCTT1) encoding two catalase isozymes with a differential enzymatic activity profile which is not strictly correlated with a differential expression profile of the encoding genes.


Assuntos
Catalase/biossíntese , Perfilação da Expressão Gênica , Saccharomycetales/enzimologia , Sequência de Aminoácidos , Catalase/química , Catalase/genética , Farmacorresistência Fúngica , Peróxido de Hidrogênio/toxicidade , Viabilidade Microbiana/efeitos dos fármacos , Dados de Sequência Molecular , Peso Molecular , Saccharomycetales/efeitos dos fármacos
10.
FEMS Yeast Res ; 9(4): 582-90, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19302096

RESUMO

Debaryomyces hansenii is an osmotolerant and halotolerant yeast of increasing interest for fundamental and applied research. In this work, we have performed a first study on the effect of oxidative stress on the performance of this yeast. We have used Saccharomyces cerevisiae as a well-known reference yeast. We show that D. hansenii is much more susceptible than S. cerevisiae to cadmium chloride, hydrogen peroxide or 1,4-dithiothreitol. These substances induced the formation of reactive oxygen species (ROS) in both yeasts, the amounts measured being significantly higher in the case of D. hansenii. We also show that NaCl exerted a protective effect against oxidative stress in Debaryomyces, but that this was not the case in Saccharomyces because sodium protected that yeast only when toxicity was induced with cadmium. On the basis of the present results, we raised the hypothesis that the sensitivity to oxidative stress in D. hansenii is related to the high amounts of ROS formed in that yeast and that observations such as low glutathione amounts, low basal superoxide dismutase and peroxidase activities, decrease in ATP levels produced in the presence of ROS inducers and high cadmium accumulation are determinants directly or indirectly involved in the sensitivity process.


Assuntos
Oxidantes/toxicidade , Estresse Oxidativo , Saccharomycetales/efeitos dos fármacos , Antioxidantes/farmacologia , Cloreto de Cádmio/toxicidade , Ditiotreitol/toxicidade , Peróxido de Hidrogênio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Cloreto de Sódio/farmacologia
11.
FEMS Yeast Res ; 8(8): 1303-12, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18752629

RESUMO

Debaryomyces hansenii was grown in YPD medium without or with 1.0 M NaCl or KCl. Respiration was higher with salt, but decreased if it was present during incubation. However, carbonylcyanide-3-chlorophenylhydrazone (CCCP) markedly increased respiration when salt was present during incubation. Salt also stimulated proton pumping that was partially inhibited by CCCP; this uncoupling of proton pumping may contribute to the increased respiratory rate. The ADP increase produced by CCCP in cells grown in NaCl was similar to that observed in cells incubated with or without salts. The alternative oxidase is not involved. Cells grown with salts showed increased levels of succinate and fumarate, and a decrease in isocitrate and malate. Undetectable levels of citrate and low-glutamate dehydrogenase activity were present only in NaCl cells. Both isocitrate dehydrogenase decreased, and isocitrate lyase and malate synthase increased. Glyoxylate did not increase, indicating an active metabolism of this intermediary. Higher phosphate levels were also found in the cells grown in salt. An activation of the glyoxylate cycle results from the salt stress, as well as an increased respiratory capacity, when cells are grown with salt, and a 'coupling' effect on respiration when incubated in the presence of salt.


Assuntos
Cloreto de Potássio/farmacologia , Saccharomycetales , Cloreto de Sódio/farmacologia , Aerobiose , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Meios de Cultura , Glioxilatos/metabolismo , Resposta ao Choque Térmico , Consumo de Oxigênio , Bombas de Próton/efeitos dos fármacos , Bombas de Próton/fisiologia , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Desacopladores/farmacologia , Água/análise
12.
Can J Microbiol ; 53(11): 1272-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18026221

RESUMO

Flavinogenic yeasts such as Debaryomyces hansenii overproduce riboflavin (RF) in the presence of heavy metals. Growth and RF production were compared between wild-type D. hansenii and a RF production-impaired metal-tolerant ura3 mutant in the presence of sublethal cobalt(II) concentrations. Debaryomyces hansenii (wild type) exhibits an extended lag phase with an increase in RF synthesis. Supplementation of exogenous uracil shortened the lag phase at the highest concentration of cobalt(II) used, suggesting that uracil has a possible role in metal acclimation. The D. hansenii ura3 mutant isolated by chemical mutagenesis exhibited a higher level of metal tolerance, no extended lag phase, and no marked increase in RF synthesis. Transformation of the mutant with the URA3 gene isolated from Saccharyomyces cerevisiae or D. hansenii did not restore wild-type characteristics, suggesting a second mutation that impairs RF oversynthesis. Our results demonstrate that growth, metal sensitivity, and RF biosynthesis are linked.


Assuntos
Cobalto/farmacologia , Riboflavina/biossíntese , Saccharomycetales/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica , Mutação/genética , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo
13.
Microbiology (Reading) ; 153(Pt 10): 3586-3592, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17906155

RESUMO

Debaryomyces hansenii is a marine yeast that has to cope with different stress situations. Since changes in membrane properties can play an important function in adaptation, we have examined the fluidity and lipid composition of purified plasma membranes of D. hansenii grown at different external pH values and salt concentrations. Growth at low pH caused an increase in the sterol-to-phospholipid ratio and a decrease in fatty acid unsaturation which was reflected in decreased fluidity of the plasma membrane. High levels of NaCl increased the sterol-to-phospholipid ratio and fatty acid unsaturation, but did not significantly affect fluidity. The sterol-to-phospholipid ratios obtained in D. hansenii grown under any of these conditions were similar to the ratios that have been reported for halophilic/halotolerant black yeasts, but much smaller than those observed in the model yeast Saccharomyces cerevisiae.


Assuntos
Membrana Celular/química , Saccharomycetales/química , Saccharomycetales/fisiologia , Membrana Celular/fisiologia , Ácidos Graxos/química , Concentração de Íons de Hidrogênio , Fluidez de Membrana/fisiologia , Fosfolipídeos/análise , Saccharomycetales/efeitos dos fármacos , Salinidade , Cloreto de Sódio/química , Esteróis/análise
14.
Microbiology (Reading) ; 153(Pt 9): 3034-3043, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17768246

RESUMO

Two genes from the halotolerant yeast Debaryomyces hansenii were cloned, DhTRK1 and DhHAK1. These genes encode K(+) transporters with sequence similarities to the TRK and HAK transporters from Debaryomyces occidentalis and Candida albicans. The DhHAK1p transporter was only expressed in K(+)-starved cells, as shown by Northern blot analysis. Both DhTRK1p and DhHAK1p were expressed in a trk1Delta trk2Delta mutant of Saccharomyces cerevisiae, unable to grow at low K(+). This expression resulted in partial recovery of growth and ability to retain K(+) at low concentrations. In liquid media, 0.5 M NaCl affected growth of these S. cerevisiae transformants as it does in D. hansenii, resulting in a much less deleterious effect than in wild-type S. cerevisiae. Kinetics of Rb(+) uptake in the transformants suggest that DhTRK1p and DhHAK1p code for moderate-affinity K(+) transporters exhibiting a sigmoid response against Rb(+) concentration and presenting a deviation from classic Michaelis-Menten kinetics at low substrate concentrations. Rb(+) uptake by the DhTRK1p transporter was stimulated by millimolar concentrations of Na(+) at pH 4.5. The good performance of DhTRK1p in the presence of NaCl may be a key feature in the halotolerance of D. hansenii.


Assuntos
Proteínas de Transporte de Cátions , Clonagem Molecular , Regulação Fúngica da Expressão Gênica , Potássio/metabolismo , Saccharomycetales/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Rubídio/metabolismo , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento , Análise de Sequência de DNA , Cloreto de Sódio/farmacologia
15.
Int J Food Microbiol ; 118(1): 1-7, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17602771

RESUMO

Debaryomyces hansenii is a salt tolerant yeast species, often isolated from sea water or found among other spoilage yeasts in several types of food. In this work, we examined the influence of temperature and increased osmotic pressure (two parameters also important in food industry) on D. hansenii growth. Several other authors showed that its growth at the normal yeast cultivation temperature (28 to 30 degrees C) is stimulated by the presence of sodium, in contrast to the growth of Saccharomyces cerevisiae, which is inhibited by the presence of sodium under the same experimental conditions. Here we show that the previously reported growth stimulation by sodium is temperature dependent in D. hansenii and can be observed under conditions that already amount to high temperature stress for D. hansenii. At a lower temperature (more convenient for D. hansenii cultivation), we found no significant improvement or even an inhibition of cell growth in the presence of Na(+). The growth of D. hansenii at high temperatures is also improved by the presence of potassium or sorbitol. Moreover, the temperature dependence of stimulatory effects of increased osmotic pressure in media does not seem to be unique for D. hansenii; similar relationships between the growth, cultivation temperature and presence of osmolytes we also observed for S. cerevisiae and Schizosaccharomyces pombe.


Assuntos
Conservação de Alimentos/métodos , Pressão Osmótica , Saccharomycetales/crescimento & desenvolvimento , Temperatura , Contaminação de Alimentos/prevenção & controle , Humanos , Cinética , Potássio/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomycetales/efeitos dos fármacos , Sódio/farmacologia , Sorbitol/farmacologia
16.
FEMS Yeast Res ; 7(2): 293-303, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17328743

RESUMO

The proteome of the highly NaCl-tolerant yeast Debaryomyces hansenii was investigated by two-dimensional polyacrylamide gel electrophoresis (2D PAGE), and 47 protein spots were identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) followed by mass spectrometry (MS). The influence of NaCl on the D. hansenii proteome was investigated during the first 3 h of NaCl exposure. The rate of protein synthesis was strongly decreased by exposure to 8% and 12% (w/v) NaCl, as the average incorporation rates of l-[(35)S]methionine within the first 30 min after addition of NaCl were only 7% and 4% of the rate in medium without NaCl. In addition, the number of protein spots detected on 2D gels prepared from cells exposed to 8% and 12% (w/v) NaCl exceeded less than 28% of the number of protein spots detected on 2D gels prepared from cells without added NaCl. Several proteins were identified as being either induced or repressed upon NaCl exposure. The induced proteins were enzymes involved in glycerol synthesis/dissimilation and the upper part of glycolysis, whereas the repressed proteins were enzymes involved in the lower part of glycolysis, the route to the Krebs cycle, and the synthesis of amino acids. Furthermore, one heat shock protein (Ssa1p) was induced, whereas others (Ssb2p and Hsp60p) were repressed.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Resposta ao Choque Térmico , Proteoma/efeitos dos fármacos , Saccharomycetales/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Eletroforese em Gel Bidimensional , Proteínas Fúngicas/genética , Proteômica , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Saccharomycetales/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Lett Appl Microbiol ; 44(3): 279-85, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17309505

RESUMO

AIMS: To examine the relationship between the growth and pH gradients of Debaryomyces hansenii at a single-cell level. METHODS AND RESULTS: Using bioimaging techniques, the cell areas and early pH gradients (Delta pH(10)), i.e. the pH gradients determined 10 min after initiation of experiments, were determined for single cells of two D. hansenii strains in fluid and on solid (agar) substrate with and without 8% (w/v) NaCl. The combination of NaCl and solid substrate prolonged the growth initiation of both D. hansenii strains additively. In all our experiments, primarily two groups of cells existed; a vital group consisting of growing single cells with intact early pH gradients, and a group of dead cells without early pH gradients. CONCLUSIONS: Our results show that growth initiation of the D. hansenii cells is severely affected by NaCl and to a lesser extent by the type of substrate in an additive and strain dependent way. Moreover, the early pH gradient of a vital D. hansenii cell cannot be correlated with the rate of its subsequent growth. SIGNIFICANCE AND IMPACT OF THE STUDY: Our study reveals new knowledge on the growth and pH gradients of D. hansenii on solid surfaces in the presence of NaCl.


Assuntos
Força Próton-Motriz , Saccharomycetales/crescimento & desenvolvimento , Cloreto de Sódio/farmacologia , Meios de Cultura , Viabilidade Microbiana , Saccharomycetales/efeitos dos fármacos , Especificidade da Espécie
18.
Eukaryot Cell ; 5(8): 1388-98, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16896222

RESUMO

The yeast Debaryomyces hansenii has a remarkable capacity to proliferate in salty and alkaline environments such as seawater. A screen for D. hansenii genes able to confer increased tolerance to high pH when overexpressed in Saccharomyces cerevisiae yielded a single gene, named here DhGZF3, encoding a putative negative GATA transcription factor related to S. cerevisiae Dal80 and Gzf3. Overexpression of this gene in wild-type S. cerevisiae increased caffeine and rapamycin tolerance, blocked growth in low glucose concentrations and nonfermentable carbon sources, and resulted in lithium- and sodium-sensitive cells. Sensitivity to salt could be attributed to a reduced cation efflux, most likely because of a decrease in expression of the ENA1 Na(+)-ATPase gene. Overexpression of DhGZF3 did not affect cell growth in a gat1 mutant but was lethal in the absence of Gln3. These are positive factors that oppose both Gzf3 and Dal80. Genome-wide transcriptional profiling of wild-type cells overexpressing DhGZF3 shows decreased expression of a number of genes that are usually induced in poor nitrogen sources. In addition, the entire pathway leading to Lys biosynthesis was repressed, probably as a result of a decrease in the expression of the specific Lys14 transcription factor. In conclusion, our results demonstrate that DhGzf3 can play a role as a negative GATA transcription factor when expressed in S. cerevisiae and that it most probably represents the only member of this family in D. hansenii. These findings also point to the GATA transcription factors as relevant elements for alkaline-pH tolerance.


Assuntos
Fatores de Transcrição GATA/fisiologia , Regulação Fúngica da Expressão Gênica , Homeostase , Nitrogênio/metabolismo , Saccharomycetales/fisiologia , Adenosina Trifosfatases/metabolismo , Álcalis/farmacologia , Proteínas de Transporte de Cátions/metabolismo , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Concentração de Íons de Hidrogênio , Íons , Mutação , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , ATPase Trocadora de Sódio-Potássio , Fatores de Transcrição/metabolismo , Ativação Transcricional , Regulação para Cima
19.
Appl Microbiol Biotechnol ; 71(5): 713-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16240114

RESUMO

The effects of NaCl stress on cell area and intracellular pH (pHi) of individual cells of two Debaryomyces hansenii strains were investigated. Our results show that one of the strains was more NaCl tolerant than the other, as determined by the rate of growth initiation. Whereas NaCl stress caused similar cell shrinkages (30-35%), it caused different pHi changes of the two D. hansenii strains; i.e., in the more NaCl-tolerant strain, pHi homeostasis was maintained, whereas in the less NaCl-tolerant strain, intracellular acidification occurred. Thus, cell shrinkage could not explain the different intracellular acidifications in the two strains. Instead, we introduce the concept of yeasts having an intracellular pKa (pK(a,i)) value, since permeabilized D. hansenii cells had a very high buffer capacity at a certain pH. Our results demonstrate that the more NaCl-tolerant strain was better able to maintain its pK(a,i) close to its pHi homeostasis level during NaCl stress. In turn, these findings indicate that the closer a D. hansenii strain can keep its pK(a,i) to its pHi homeostasis level, the better it may manage NaCl stress. Furthermore, our results suggest that the NaCl-induced effects on pHi were mainly due to hyperosmotic stress and not ionic stress.


Assuntos
Homeostase , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/fisiologia , Cloreto de Sódio/farmacologia , Meios de Cultura , Resposta ao Choque Térmico , Concentração de Íons de Hidrogênio , Pressão Osmótica , Saccharomycetales/crescimento & desenvolvimento
20.
Biochem Biophys Res Commun ; 328(4): 906-13, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15707964

RESUMO

Mitogen-activated protein kinase (MAPK) cascade is a ubiquitous signaling module that transmits extracellular stimuli through the cytoplasm to the nucleus. In baker's yeast external high osmolarity activates high osmolarity glycerol (HOG) MAPK pathway which consists of two upstream branches (SHO1 and SLN1) and common downstream elements Pbs2p MAPKK and Hog1p MAPK. Activation of this pathway causes rapid nuclear accumulation of Hog1p, essentially leading to the expression of target genes. Previously we have isolated a PBS2 homologue (DPBS2) from osmo-tolerant and salt-tolerant yeast Debaryomyces hansenii that partially complemented pbs2 mutation in Saccharomyces cerevisiae. Here we show that by replacing C-terminal region of Dpbs2p with the homologous region of Pbs2p we could abrogate partial complementation exhibited by Dpbs2p and this was achieved due to increase in nuclear translocation of Hog1p. Thus, our result showed that in HOG pathway, MAPKK has important role in nuclear translocation of Hog1p.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomycetales/enzimologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Pressão Osmótica/efeitos dos fármacos , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , Transdução de Sinais/fisiologia , Cloreto de Sódio/farmacologia , Relação Estrutura-Atividade , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Equilíbrio Hidroeletrolítico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA